Over-expression of neuron-derived orphan receptor-1 (NOR-1) exacerbates neointimal hyperplasia after vascular injury.
نویسندگان
چکیده
We have previously shown that NOR-1 (NR4A3) modulates the proliferation and survival of vascular cells in culture. However, in genetically modified animal models, somewhat conflicting results have been reported concerning the involvement of NOR-1 in neointimal formation after vascular injury. The aim of this study was to generate a transgenic mouse model over-expressing NOR-1 in smooth muscle cells (SMCs) and assess the consequence of a gain of function of this receptor on intimal hyperplasia after vascular injury. The transgene construct (SM22-NOR1) was prepared by ligating the full-length human NOR-1 cDNA (hNOR-1) and a mouse SM22α minimal promoter able to drive NOR-1 expression to SMC. Two founders were generated and two stable transgenic mouse lines (TgNOR-1) were established by backcrossing the transgene-carrying founders with C57BL/6J mice. Real-time PCR and immunohistochemistry confirmed that hNOR-1 was mainly targeted to vascular beds such as aorta and carotid arteries, and was similar in both transgenic lines. Vascular SMC from transgenic animals exhibit increased NOR-1 transcriptional activity (assessed by electrophoretic mobility shift assay and luciferase assays), increased mitogenic activity (determined by [(3)H]-thymidine incorporation; 1.58-fold induction, P < 0.001) and increased expression of embryonic smooth muscle myosin heavy chain (SMemb) than wild-type cells from control littermates. Using the carotid artery ligation model, we show that neointima formation was increased in transgenic versus wild-type mice (2.36-fold induction, P < 0.01). Our in vivo data support a role for NOR-1 in VSMC proliferation and vascular remodelling. This NOR-1 transgenic mouse could be a useful model to study fibroproliferative vascular diseases.
منابع مشابه
Targeted disruption of the prostaglandin E2 E-prostanoid 2 receptor exacerbates vascular neointimal formation in mice.
OBJECTIVE Restenosis after angioplasty remains a major clinical problem. Prostaglandin E(2) (PGE(2)) plays an important role in vascular homeostasis. The PGE(2) receptor E-prostanoid 2 (EP2) is involved in the proliferation and migration of various cell types. We aimed to determine the role of EP2 in the pathogenesis of neointimal formation after vascular injury. METHODS AND RESULTS Wire-medi...
متن کاملIntegrative Physiology and Experimental Medicine Targeted Disruption of the Prostaglandin E2 E-Prostanoid 2 Receptor Exacerbates Vascular Neointimal Formation in Mice
Objective—Restenosis after angioplasty remains a major clinical problem. Prostaglandin E 2 (PGE 2) plays an important role in vascular homeostasis. The PGE 2 receptor E-prostanoid 2 (EP2) is involved in the proliferation and migration of various cell types. We aimed to determine the role of EP2 in the pathogenesis of neointimal formation after vascular injury. Methods and Results—Wire-mediated ...
متن کاملSmooth muscle LDL receptor-related protein-1 inactivation reduces vascular reactivity and promotes injury-induced neointima formation.
OBJECTIVE Defective smooth muscle expression of LDL receptor-related protein-1 (Lrp1) increases atherosclerosis in hypercholesterolemic mice. This study explored the importance of smooth muscle Lrp1 expression under normolipidemic conditions. METHODS AND RESULTS Smooth muscle cells isolated from control (smLrp1(+/+)) and smooth muscle-specific Lrp1 knockout (smLrp1(-/-)) mice were characteriz...
متن کاملTherapeutic reendothelialization by induced pluripotent stem cells after vascular injury--brief report.
OBJECTIVE Endothelial damage is an early requisite step for atherosclerosis after vascular injury. It has been reported that vascular wall cells can develop from induced pluripotent stem (iPS) cell-derived fetal liver kinase-1-positive (Flk-1(+)) cells. Here, we investigated the efficacies of intravenously administered iPS cell-derived Flk-1(+) cells on reendothelialization and neointimal hyper...
متن کاملInflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery.
OBJECTIVE Percutaneous coronary intervention (PCI) is currently the most widely accepted treatment for acute myocardial infarction (AMI). It remains unclear, however, whether post-AMI conditions might exacerbate neointimal hyperplasia and restenosis following PCI. Given that both a medial smooth muscle cell lineage and a bone marrow (BM)-derived hematopoietic stem cell lineage are now thought t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2013